La cryo-microscopie est une technique utilisée pour l’observation des molécules cellulaires et biologiques à des températures cryogéniques. Le CRYO ARMTM 300 II intègre les dernières technologies JEOL pour la cryo-microscopie : Cold FEG, filtre en énergie Omega, système d’échange automatique des échantillons à température cryogénique…

Le système permet l’échange d’un ou de plusieurs échantillons rendant les études cryo plus flexibles. De plus, la combinaison du canon Cold FEG, avec le filtre Omega et les Hole Free Phase Plate améliore grandement le contraste des images acquises sur des échantillons biologiques. Le développement de cette dernière génération de MET incorpore de nombreux automatismes pour faciliter son utilisation et l’acquisition des données en particule isolée et cryo-tomographie.

Collection ultra rapide de données

Le CRYO ARM ™ 300 II permet une acquisition de données à très grande vitesse en combinant le déplacement du faisceau avec un mouvement précis de la platine goniométrique. De plus, l'excellent contrôle du faisceau de ce système minimise l’aberration de coma.
Par conséquent, le vitesse d’acquisition peut être augmentée de façon importante (> 2200 films / heures) sans dégrader la qualité d'image.

Number of micrographs taken per day
Illumination, configuration example en mode standard et mode Koehler (CRYOARM300)

Mode sans Frange de Fresnel

En plus de l’illumination conventionnelle, le CRYO ARM ™ 300 II dispose d'une illumination unique en « mode Koehler ». Ce mode permet de s’affranchir des franges d'interférence et élimine les dommages causés par le faisceau d'électrons aux zones non utilisées pour l'imagerie. Il vous permet d'obtenir plus d'images.

Bibliographie

Chen, Zhenghao et al. “Cryo-EM structures of human SPCA1a reveal the mechanism of Ca2+/Mn2+ transport into the Golgi apparatus.” Science advances vol. 9,9 (2023): eadd9742. doi:10.1126/sciadv.add9742

Himiyama, Tomoki et al. “Unnaturally Distorted Hexagonal Protein Ring Alternatingly Reorganized from Two Distinct Chemically Modified Proteins.” Bioconjugate chemistry, 10.1021/acs.bioconjchem.3c00057. 8 Mar. 2023, doi:10.1021/acs.bioconjchem.3c00057

Rangarajan, Erumbi S et al. “Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments.” Communications biology vol. 6,1 276. 16 Mar. 2023, doi:10.1038/s42003-023-04610-x

Nagao, Ryo et al. “Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120.” Nature communications vol. 14,1 920. 17 Feb. 2023, doi:10.1038/s41467-023-36504-1

Fujita, Junso et al. “Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis.” Scientific reports vol. 13,1 2279. 8 Feb. 2023, doi:10.1038/s41598-023-29396-0

Nakanishi, Atsuko et al. “Cryo-EM analysis of V/A-ATPase intermediates reveals the transition of the ground-state structure to steady-state structures by sequential ATP binding.” The Journal of biological chemistry, 102884. 7 Jan. 2023, doi:10.1016/j.jbc.2023.102884

Yin, Jiayi et al. “Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA.” Nucleic acids research vol. 50,22 (2022): 13100-13113. doi:10.1093/nar/gkac1142

Wang, Xiaoshen et al. “Target RNA-guided protease activity in type III-E CRISPR-Cas system.” Nucleic acids research vol. 50,22 (2022): 12913-12923. doi:10.1093/nar/gkac1151

Rangarajan, Erumbi S et al. “The nematode HMP1/α-catenin has an extended α-helix when bound to actin filaments.” The Journal of biological chemistry, 102817. 17 Dec. 2022, doi:10.1016/j.jbc.2022.102817

Otsubo, Ryota et al. “Human antibody recognition and neutralization mode on the NTD and RBD domains of SARS-CoV-2 spike protein.” Scientific reports vol. 12,1 20120. 22 Nov. 2022, doi:10.1038/s41598-022-24730-4

Lemonidis, Kimon et al. “Structural and biochemical basis of interdependent FANCI-FANCD2 ubiquitination.” The EMBO journal, e111898. 17 Nov. 2022, doi:10.15252/embj.2022111898

Yu, Guimei et al. “Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex.” Nature microbiology vol. 7,12 (2022): 2078-2088. doi:10.1038/s41564-022-01256-z

Shkumatov, Alexander V et al. “Structural insight into Tn3 family transposition mechanism.” Nature communications vol. 13,1 6155. 18 Oct. 2022, doi:10.1038/s41467-022-33871-z

Haney, Joanne et al. “Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles.” Nature microbiology vol. 7,11 (2022): 1879-1890. doi:10.1038/s41564-022-01242-5

Fréchin, Léo et al. “High-resolution cryo-EM performance comparison of two latest- generation cryo electron microscopes on the human ribosome.” Journal of structural biology, vol. 215,1 107905. 12 Oct. 2022, doi:10.1016/j.jsb.2022.107905

Li, Jiannan et al. “Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution.” Communications biology vol. 5,1 951. 12 Sep. 2022, doi:10.1038/s42003-022-03926-4

Manik, Mohammad K et al. “Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling.” Science (New York, N.Y.) vol. 377,6614 (2022): eadc8969. doi:10.1126/science.adc8969

Maeda, Ryota et al. “A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron.” Communications biology vol. 5,1 669. 6 Jul. 2022, doi:10.1038/s42003-022-03630-3

Kawakami, Keisuke et al. “Core and rod structures of a thermophilic cyanobacterial light- harvesting phycobilisome.” Nature communications vol. 13,1 3389. 17 Jun. 2022, doi:10.1038/s41467-022-30962-9

Yoshikawa, Tatsushi et al. “Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis.” Chemical communications (Cambridge, England) vol. 58,45 6478-6481. 1 Jun. 2022, doi:10.1039/d2cc01541b

Kishikawa, J et al. “Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases.” Nature communications vol. 13,1 1213. 8 Mar. 2022, doi:10.1038/s41467-022-28832-5

Hogrel, Gaëlle et al. “Cyclic nucleotide-induced helical structure activates a TIR immune effector.” Nature vol. 608,7924 (2022): 808-812. doi:10.1038/s41586-022-05070-9

Kiss-Szemán, Anna J et al. “Cryo-EM structure of acylpeptide hydrolase reveals substrate selection by multimerization and a multi-state serine-protease triad.” Chemical science vol. 13,24 7132-7142. 18 May. 2022, doi:10.1039/d2sc02276a

Shi, Yun et al. “Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules.” Molecular cell vol. 82,9 (2022): 1643-1659.e10. doi:10.1016/j.molcel.2022.03.007

Tani, Kazutoshi et al. “A Ca2+-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes.” The Journal of biological chemistry vol. 298,6 (2022): 101967. doi:10.1016/j.jbc.2022.101967

Watanabe, Ryoto et al. “Particle Morphology of Medusavirus Inside and Outside the Cells Reveals a New Maturation Process of Giant Viruses.” Journal of virology vol. 96,7 (2022): e0185321. doi:10.1128/jvi.01853-21

Kato, Koji et al. “Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus.” eLife vol. 11 e73990. 11 Apr. 2022, doi:10.7554/eLife.73990

Li, Na et al. “Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus.” Virologica Sinica vol. 37,1 (2022): 127-137. doi:10.1016/j.virs.2022.01.015

Tanaka, Saki et al. “Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump.” Journal of medicinal chemistry vol. 65,11 (2022): 7843-7853. doi:10.1021/acs.jmedchem.2c00338

Kuzuya, Maki et al. “Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids.” Science signaling vol. 15,720 (2022): eabg6941. doi:10.1126/scisignal.abg6941

Kolata, Piotr, and Rouslan G Efremov. “Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation.” eLife vol. 10 e68710. 26 Jul. 2021, doi:10.7554/eLife.68710

Yu, Huaxin et al. “Cryo-EM structure of monomeric photosystem II at 2.78 Å resolution reveals factors important for the formation of dimer.” Biochimica et biophysica acta. Bioenergetics vol. 1862,10 (2021): 148471. doi:10.1016/j.bbabio.2021.148471

Hiragi, Keito et al. “Structural insights into the targeting specificity of ubiquitin ligase for S. cerevisiae isocitrate lyase but not C. albicans isocitrate lyase.” Journal of structural biology vol. 213,3 (2021): 107748. doi:10.1016/j.jsb.2021.107748

Kawamoto, Akihiro et al. “Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries.” Nature communications vol. 12,1 4223. 9 Jul. 2021, doi:10.1038/s41467-021-24507-9

Pradhan, Brajabandhu et al. “Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli.” The EMBO journal vol. 40,17 (2021): e106887. doi:10.15252/embj.2020106887

Efremov, Rouslan G, and Annelore Stroobants. “Coma-corrected rapid single-particle cryo- EM data collection on the CRYO ARM 300.” Acta crystallographica. Section D, Structural biology vol. 77,Pt 5 (2021): 555-564. doi:10.1107/S2059798321002151

Maki-Yonekura, Saori et al. “Advances in cryo-EM and ED with a cold-field emission beam and energy filtration -Refinements of the CRYO ARM 300 system in RIKEN SPring-8 center.” Microscopy (Oxford, England) vol. 70,2 (2021): 232-240. doi:10.1093/jmicro/dfaa052

Sutherland, Hazel et al. “The Cryo-EM Structure of Vesivirus 2117 Highlights Functional Variations in Entry Pathways for Viruses in Different Clades of the Vesivirus Genus.” Journal of virology vol. 95,13 (2021): e0028221. doi:10.1128/JVI.00282-21

Hamaguchi, Tasuku et al. “Structure of the far-red light utilizing photosystem I of Acaryochloris marina.” Nature communications vol. 12,1 2333. 20 Apr. 2021, doi:10.1038/s41467-021-22502-8

Kato, Koji et al. “High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams.” Communications biology vol. 4,1 382. 22 Mar. 2021, doi:10.1038/s42003-021-01919-3

Rennie, Martin L et al. “Structural basis of FANCD2 deubiquitination by USP1- UAF1.” Nature structural & molecular biology vol. 28,4 (2021): 356-364. doi:10.1038/s41594-021-00576-8

Takaba, Kiyofumi et al. “Protein and Organic-Molecular Crystallography With 300kV Electrons on a Direct Electron Detector.” Frontiers in molecular biosciences vol. 7 612226. 6 Jan. 2021, doi:10.3389/fmolb.2020.612226

Naitow, Hisashi et al. “Apple latent spherical virus structure with stable capsid frame supports quasi-stable protrusions expediting genome release.” Communications biology vol. 3,1 488. 4 Sep. 2020, doi:10.1038/s42003-020-01217-4

Fislage, Marcus et al. “Assessing the JEOL CRYO ARM 300 for high-throughput automated single-particle cryo-EM in a multiuser environment.” IUCrJ vol. 7,Pt 4 707-718. 11 Jun. 2020, doi:10.1107/S2052252520006065

Takaba, Kiyofumi et al. “Collecting large datasets of rotational electron diffraction with ParallEM and SerialEM.” Journal of structural biology vol. 211,2 (2020): 107549. doi:10.1016/j.jsb.2020.107549

Rennie, Martin L et al. “Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA.” EMBO reports vol. 21,7 (2020): e50133. doi:10.15252/embr.202050133

Yonekura, Koji et al. “A new cryo-EM system for electron 3D crystallography by eEFD.” Journal of structural biology vol. 206,2 (2019): 243-253. doi:10.1016/j.jsb.2019.03.009

Kato, Takayuki, et al. “CryoTEM with a Cold Field Emission Gun That Moves Structural Biology into a New Stage.” Microscopy and Microanalysis, vol. 25, no. S2, 2019, pp. 998–999., doi:10.1017/S1431927619005725.

Bhella, David. “Cryo-electron microscopy: an introduction to the technique, and considerations when working to establish a national facility.” Biophysical reviews vol. 11,4 (2019): 515-519. doi:10.1007/s12551-019-00571-w

Hamaguchi, Tasuku et al. “A new cryo-EM system for single particle analysis.” Journal of structural biology vol. 207,1 (2019): 40-48. doi:10.1016/j.jsb.2019.04.011

MET corrigé 300 kV

CARACTÉRISTIQUES

Cold field emission gun (Cold FEG)

Filtre Omega dans la colonne

Refroidissement : refroidit à la température de l’azote liquide. Système de remplissage automatique.
Température :  < 100 K
X  Y Mouvements : ±1 mm
Z Mouvements : ± 0,2 mm
Rotation de l’échantillon : 0° ou  90°
Système d’échange de l’échantillon : Cryo-transfert automatique
Cooling temperature : < 105 K
Stockage échantillons cryo : 12 échantillons peuvent être stockés

Les caractéristiques de ce produit peuvent changer sans notification.

À lire

Webinaire

Application Bio.