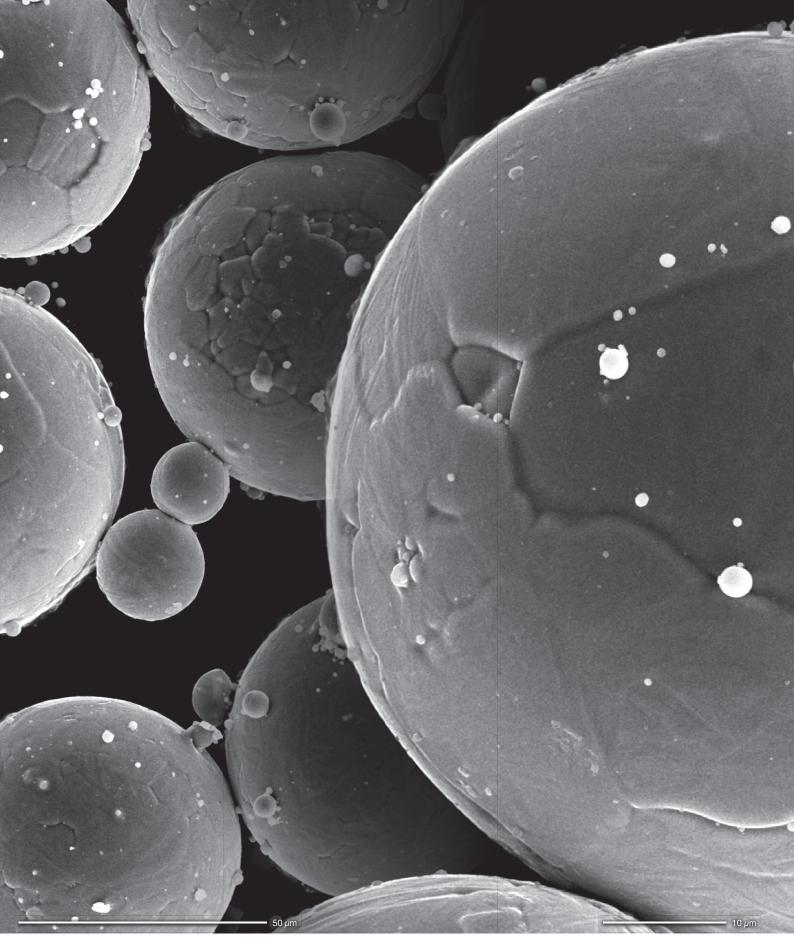
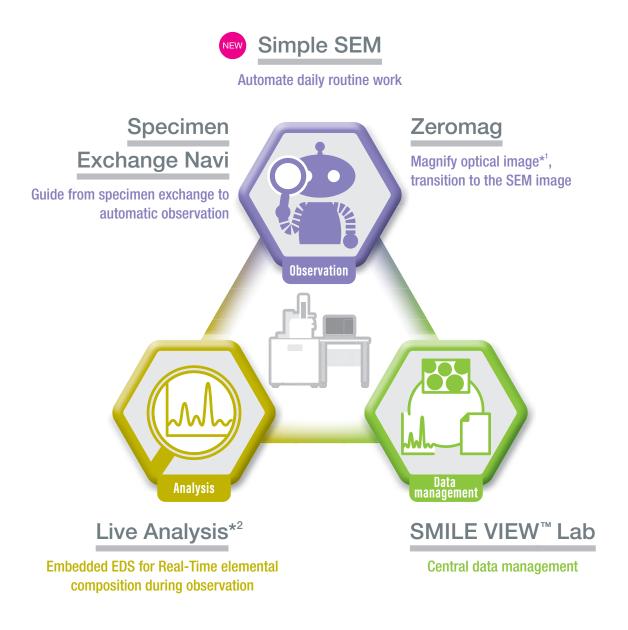

Scientific / Metrology Instruments Scanning Electron Microscope

Solutions for Innovation


JSM-IT510

JEOL Ltd.

Titanium alloy Ti-6AI-4V is a popular material for metal 3D printing. It is very important to control the size and shape.



Specimen: Titanium alloy powder (Ti-6AI-4V) Accelerating voltage: 20 kV Signal: Secondary electron (SE)

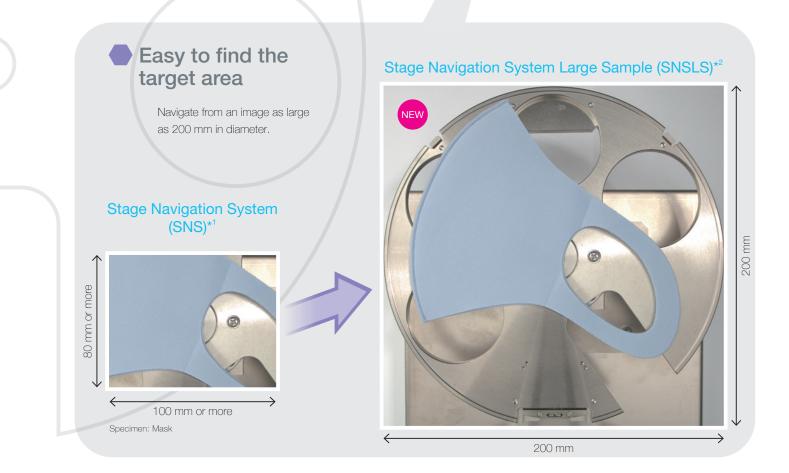
Model of gas turbine prepared by a metal 3D printer (Electron beam metal AM machine JAM-5200EBM).

Easy to acquire data

for all specimen types

Guide from specimen exchange to au Specimen Exchange Navi

Safe and simple! Specimen Exchange Navi


Follow the Navi guide to set specimen

Specimen height scale

Prepare for observation during evacuation

tomatic observation

Start observation automatically

Automatic image formation after evacuation.

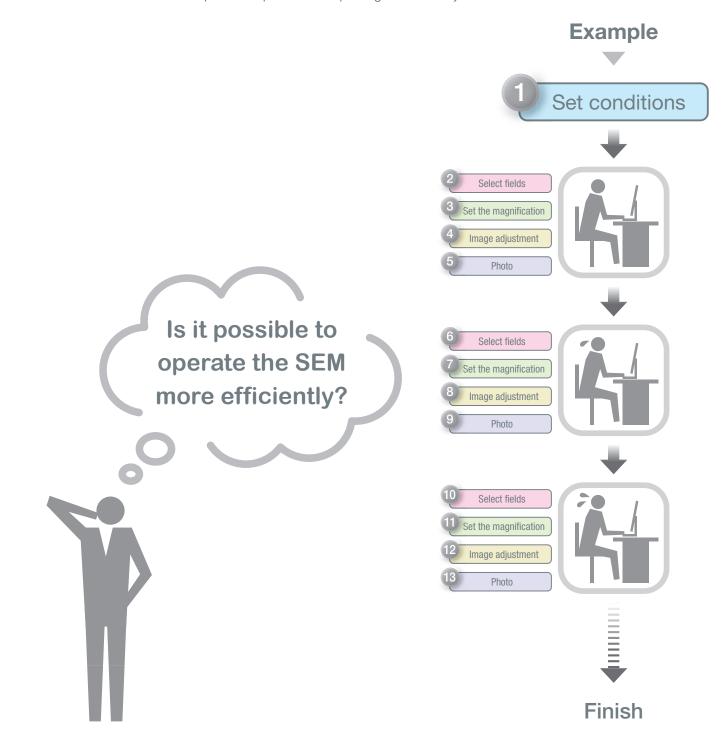
Display the inside of chamber

Tilt to 20°

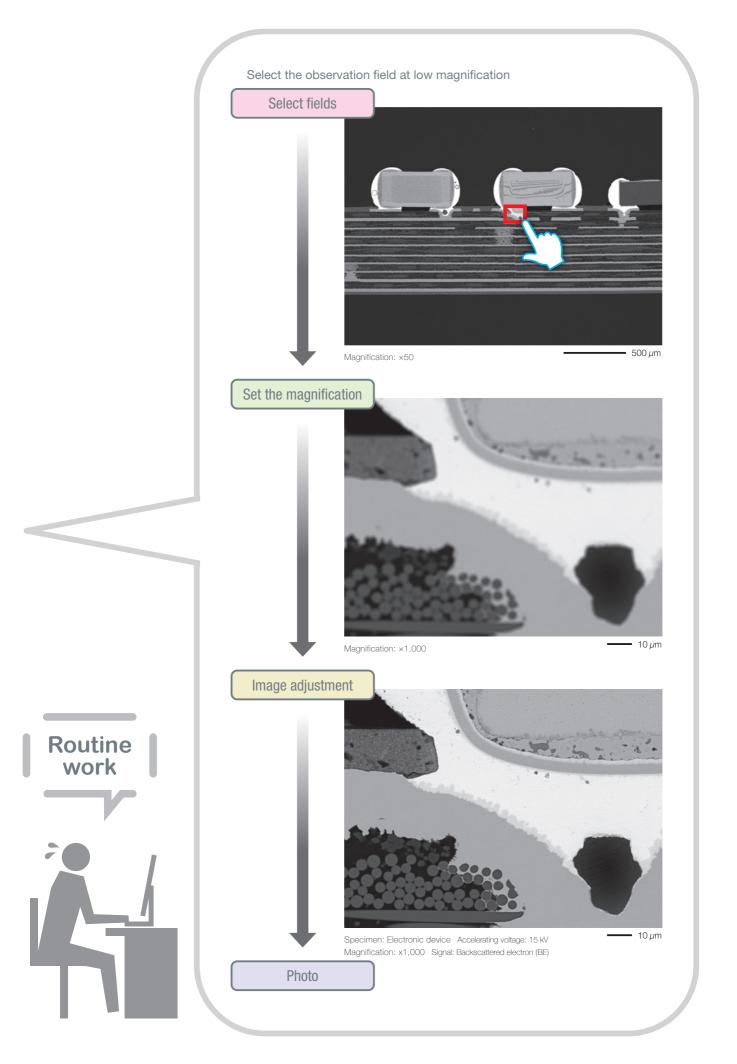
Chamber Scope (CS)*³

High resolution camera with digital zoom for viewing specimen position. Operations like tilting or rotation, are safe because movements in the chamber is visible.

*1 State Navigation System (SNS) is an option.

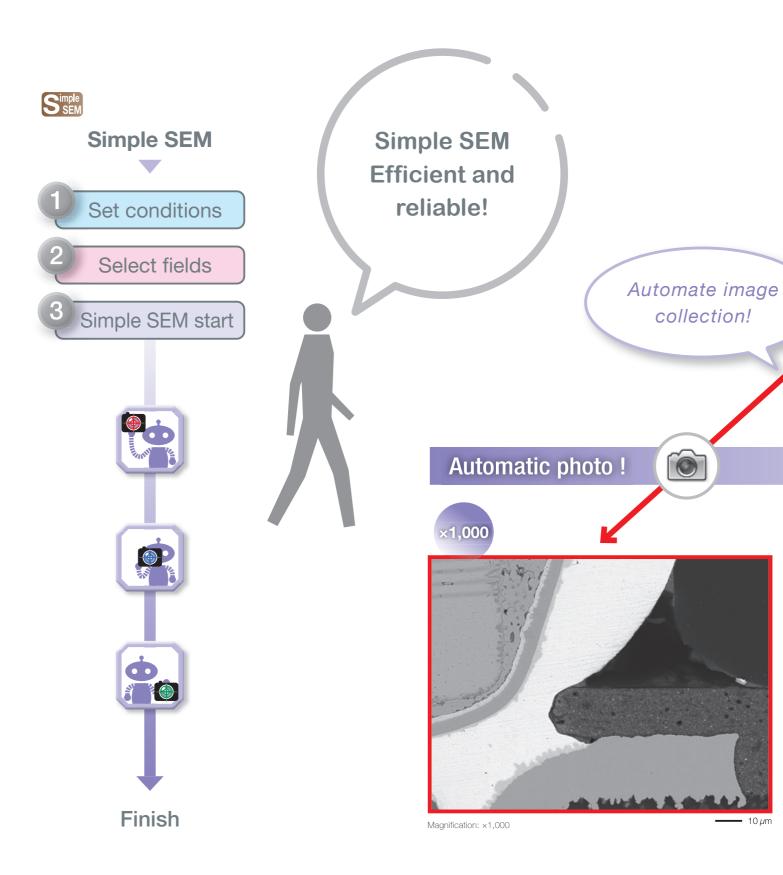

*2 SNS Large Sample (SNSLS) is an option. Compatible with SNS.

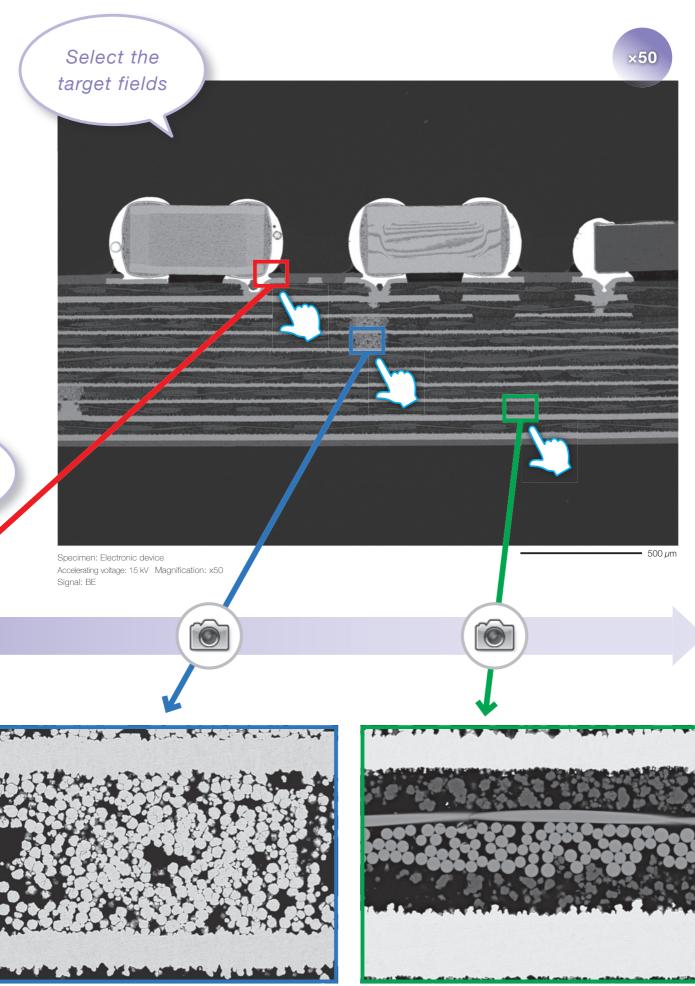
^{*3} Chamber Scope (CS) is an option.


Automate daily routine work

As an important characterization method in R&D, SEM observation depends on manual operation.

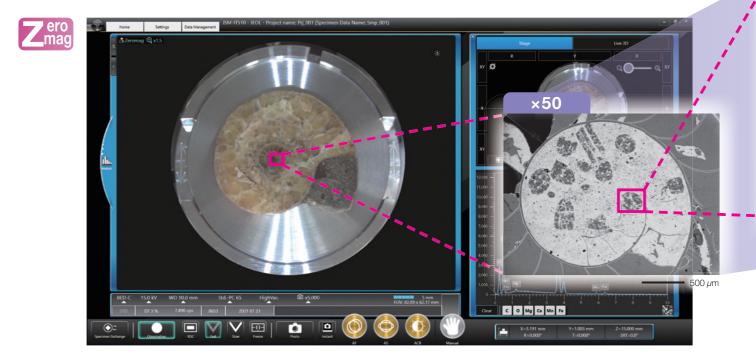
With advancements in SEM, it has become an important tool for quality assurance and manufacturing. As a part of inspection, the same observation is performed repeatedly. The observation speed is important for improving the efficiency of routine work.



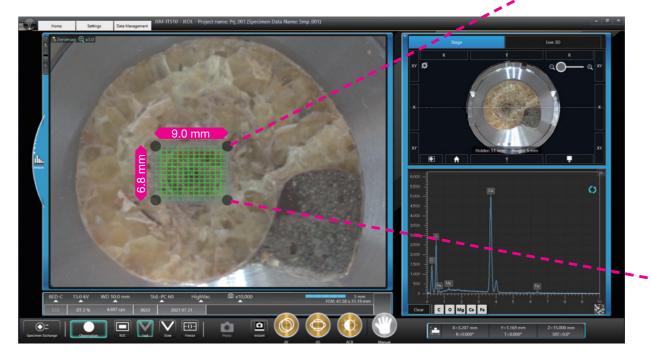

Observation

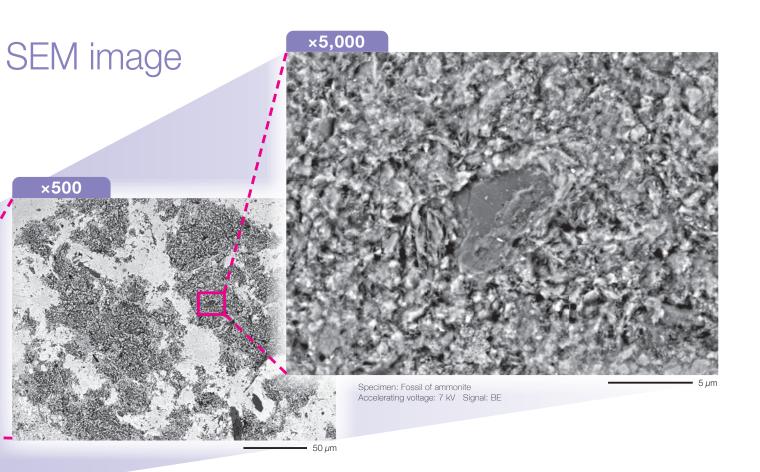
Simple SEM supports daily routine work.

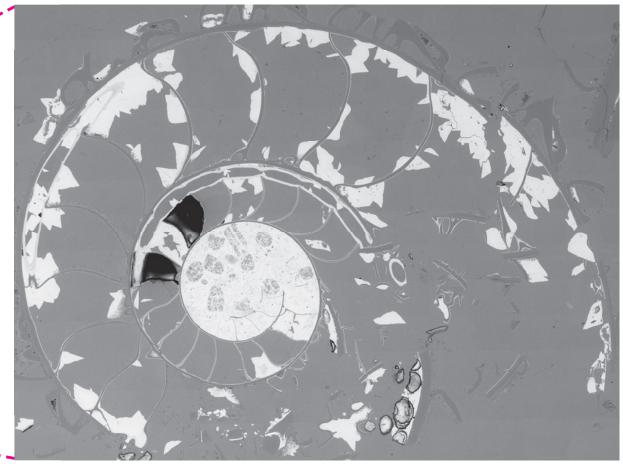
Magnification: ×1,000


10 μm Magnification: ×1,000

– 10 µm


Magnify the optical image, transition to **Zeromag**

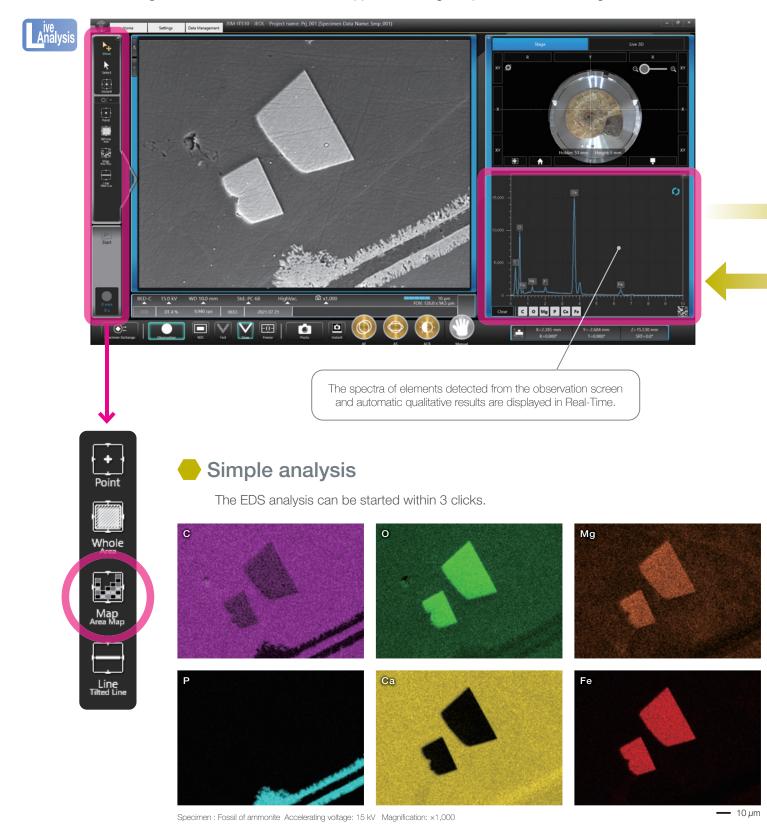

The Zeromag function simplifies navigation providing a seamless transition from the optical to SEM image. The SEM, optical image and holder graphic are all linked for a global view of analysis locations.



Montage

Montage function automates large area image collection and stitching of these images into a composite image.

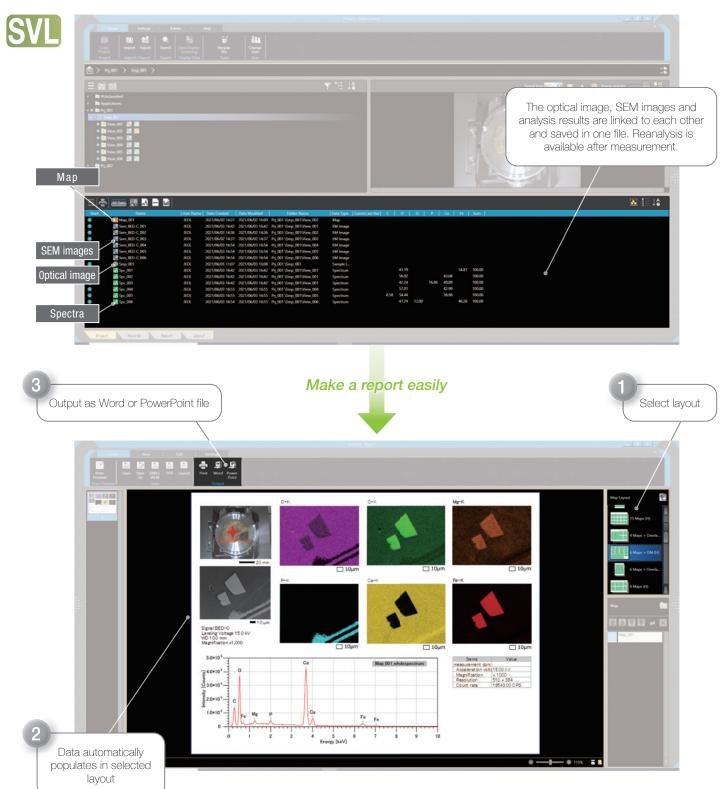
Specimen: Fossil of ammonite Accelerating voltage: 15 kV Signal: BE Number of field: 13 x13 Magnification: x150


• 2 mm

* Stage Navigation System (SNS) is needed to display the optical image.

Embedded EDS for Real-Time eleme

Live Analysis is a function which displays the EDS spectrum or element maps in Real-Time during image observation. This function can support searching and provide an alert for target elements.

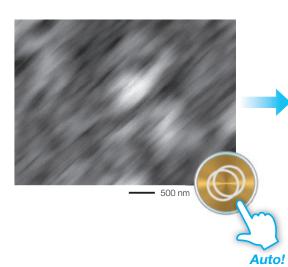

ntal composition during observation

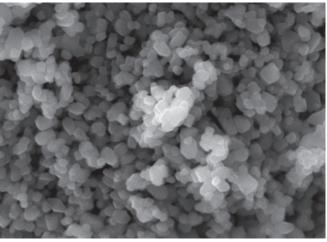
Live Map \mathbf{p}_{I} Count Map Weighted Elements of color composition image S IMG1 P-K 10µm 10µm **Switch** Ca-K Fe-K 10µm 10µm Ca-K Mg-K P-K Fe-K Clear O-K The Live Map displayed.

Data management

Central data management SMILE VIEW[™] Lab

SMILE VIEW[™] Lab is JEOL software that links the optical image, SEM images and EDS analysis results. Install an off-line version* to another computer to free the instrument for data collection and work with your data offline.


* Off-line data analysis software (option) is required

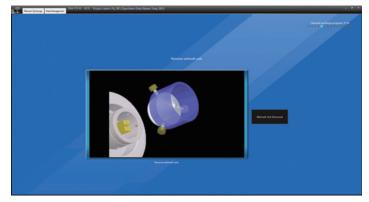


Tools for speed

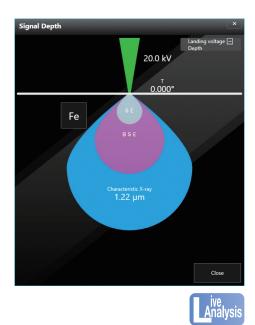
Auto functions

In order to obtain a clear image, operators need to adjust stigma, beam alignment and focus carefully. Advanced auto functions complete all these adjustments.

Specimen: TiO₂ particles Accelerating voltage: 10 kV Magnification: x30,000 Signal: SE


- 500 nm

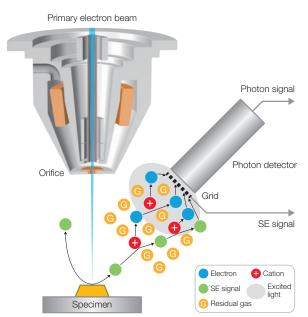
Display the depth of signal

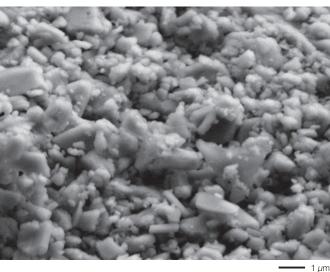

This function displays the analysis depth (approx.) in the specimen. For element analysis, it is very useful.

Maintenance

Following the Help guide, anybody can exchange the filament.

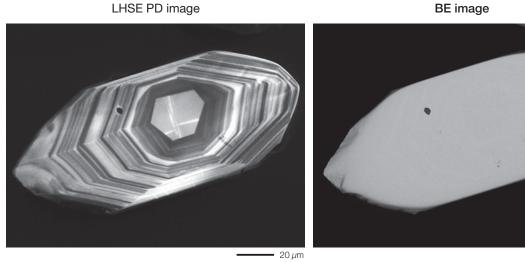
Guide for exchanging filament




Variety of advanced options

Low-vacuum Hybrid Secondary Electron Detector (LHSED)*

This new detector collects both electron and photon signals providing an image with high S/N and enhanced topographic information.



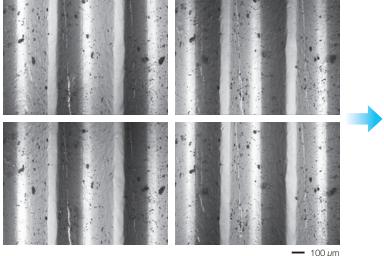
The mechanism of LHSED

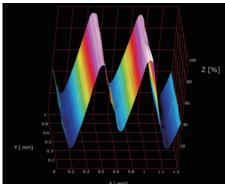
Specimen: Plaster Accelerating voltage: 7 kV Magnification: x10,000 Signal: LV SE

Some mineral and oxides will produce light when irradiated by an electron beam. LHSE PD (Photon Detector) can capture this light emission. LHSED in PD mode captures the signals originally from cathodoluminescence (CL).

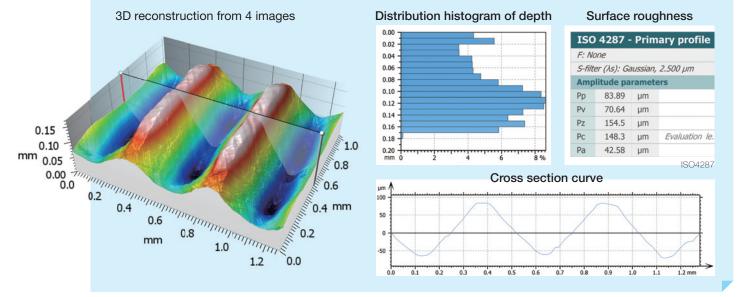
Specimen: Zircon Accelerating voltage: 10 kV Magnification: x800

- 20 *u*m


* LHSED is an option. And LV (Low Vacuum) or LA (Low Vacuum & Analysis) is also required.


The images obtained by a new quadrant BE detector^{*1} can be displayed as a live 3D image. 3D images can clearly represent the shape of a specimen, even for those with subtle topographic information.

The 4 images obtained by a quadrant BE detector



More information about 3D

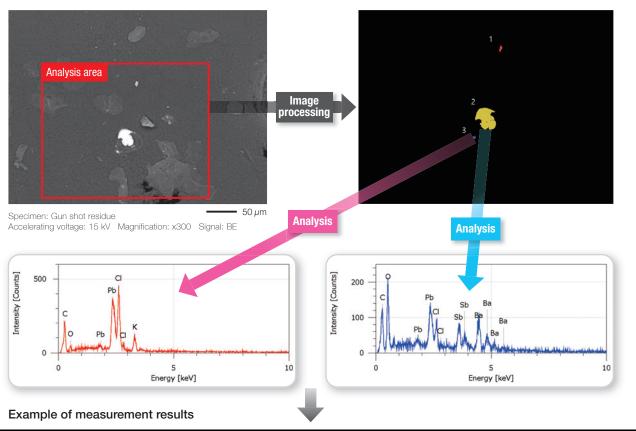
SMILE VIEW[™] Map*²

Specimen: Screw Accelerating voltage: 15 kV Magnification: x100 Signal: BE

SMILE VIEW[™] Map is a multi-function software with tools for image enhancement, colorization, 3D reconstruction from stereo pair or 4 quadrant images^{*1}, and surface metrology calculations. After setting up the layout and workflow, the same analysis can be repeated. In addition, SMILE VIEW[™] Map supports many surface analysis specifications like ISO4287.

*1 Live 3D is a standard in LV (Low Vacuum), LA (Low Vacuum & Analysis). BE detector (option) can be equipped on BU (Base Unit), A (Analysis) *2 SMILE VIEW[™] Map is an option.

Application of GSR


Particle analysis

Target particles can be automatically detected and analyzed. Particle analysis software automates the detection, EDS analysis and classification of particles, grains, inclusions or other features in specimens.* It is possible for statistical processing such as composition and shape that are detected particles based on information from particle analysis.

Applications of particle analysis software

- Automobile parts cleanliness analysis library
- Gun shot residue (GSR) library
- Metal feature analysis library
- Asbestos investigation etc.

The particles are detected based on their brightness in an SEM image. Then the elemental composition of particles are obtained through EDS analysis.

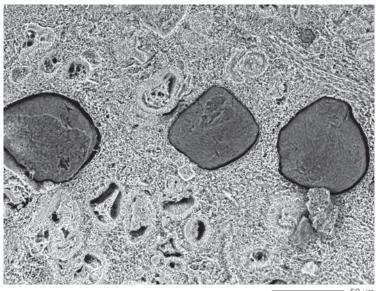
								SI			
No.	Label No.	Particle image	Class name	Area [µm²]	Perimeter [µm]	Roundness	Heywood diameter [µm]	Maximum length [µm]	Breadth [µm]	Aspect	ratio
1	Stub1-396-1	8	Sb,Ba	7.639	11.667	0.705	3.119	4.125	3.363		1.227
2	Stub1-64-4		Pb,Sb,Ba	85.590	58.333	0.316	The rati	o of numbe	r Pb		1.425
3	Stub1-74-1		Pb,Sb,Ba	7.465	12.500	0.600			Ba, AlBaPb, Sb		1.124
4	Stub1-162-2	-	Pb,Sb,Ba	15.278	20.833	0.442		* 01	Pb, Ba) A	1.254
								UI I	iy count the GSR par	lucies.	

* EDS is an option. A (Analysis) / LA (Low Vacuum & Analysis) is required for this analysis.

19 JSM-IT510

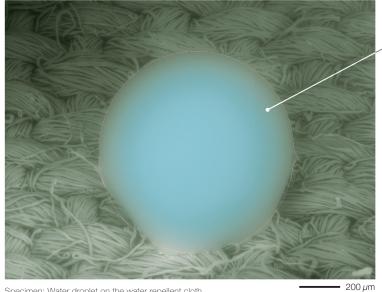
Low temperature observation

Cryo-holder* and cool stage* are available for low temperature observation. JSM-IT510 is suitable for observing hydrated specimens like food and others.


Cryo-observation

The surface of a hydrated specimen like this example of a food product can be observed using the LV cryo-holder* by keeping the specimen frozen.

Large LV cryo-holder


Specimen: Cross section of sausage Accelerating voltage: 10 kV Magnification: x500 Signal: LV BE

50 µm

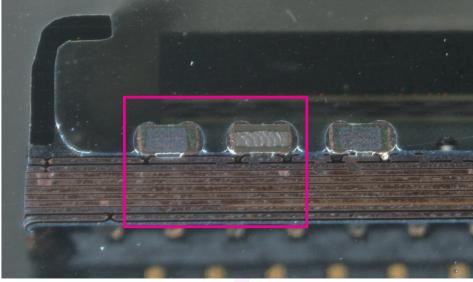
Aqua observation

The direct observation of water droplet is possible using Aqua Cover method.

Specimen: Water droplet on the water repellent cloth Accelerating voltage: 25 kV Magnification: x70 Signal: LV BE

Water droplet

Image of water droplet on a water repellent cloth.


The image is colored by image processing software.

Optical to electron ~the wo

Optical microscope

Color image

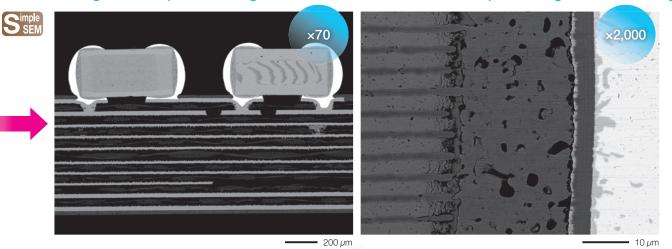
Automatic photo at different magnifications using SEM

Specimen: Electronic device

- 1000 μm

X-ray fluorescence spectroscopy (XRF) • Elemental information of bulk Composition analysis 250.0-9 CuKa 200.0-JSX-1000S* Shla1 — CaKa_{Ca}Kb1BaLa1TiKa BaLb2 CuKb1 NiKa **EDS** 150.0elemental map CPS BrKa - CuLa1,2_____AlKaSiKa 100.0-<u>-</u>BiLb1_{BrKb1} NiKb1 - RhKbCOM RhKb1 PKaSka BiLa1 SrKa 50.0-BiLr1 MoKa -SnKa SbKa SnKb1 SbKb1 0.0 10.00 15.00 20.00 5.00 25.00 30.00 0.00 keV * Sold separately

21 JSM-IT510


rld appears through SEM~

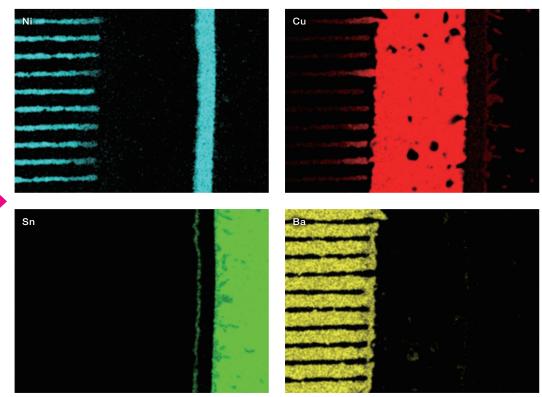
After setting several specified magnifications, the JSM-IT510 will capture images automatically.

Simple SEM supports imaging specimens

from low magnification to high magnification

Accelerating voltage: 10 kV Magnification: x70 Signal: BE

Accelerating voltage: 10 kV Magnification: x2,000 Signal: BE

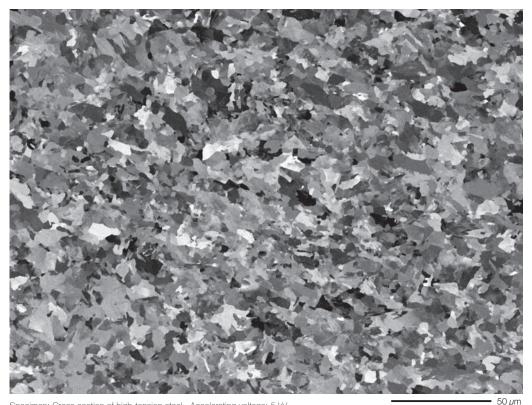


SEM

Investigate the elemental distribution in detail

Perform elemental analysis in the interested area

EDS elemental map displays distribution of elements in the specimen.


Accelerating voltage: 10 kV Magnification: x2,000

- 10 μm

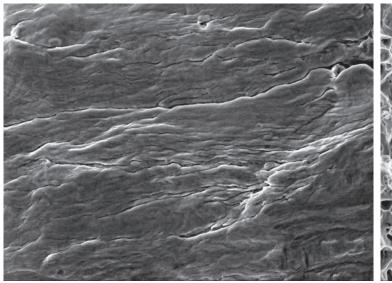
Crystalline observation of steel Signal

Metal

Specimen: Cross section of high-tension steel $% 10^{-1}$ Accelerating voltage: 5 kV Magnification: x500 $\,$ Signal: BE

For crystalline materials, such as metals, the contrast (channeling contrast) caused by the difference in crystal orientation can be imaged.

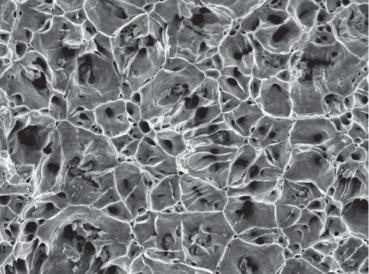
IB-19530CP*1


CROSS SECTION POLISHER™ (CP) is designed for producing cross section or surface milling by using a broad Ar ion beam to irradiate the specimen. Compared with mechanical milling, CP can easily produce a fine cross section without distortion.

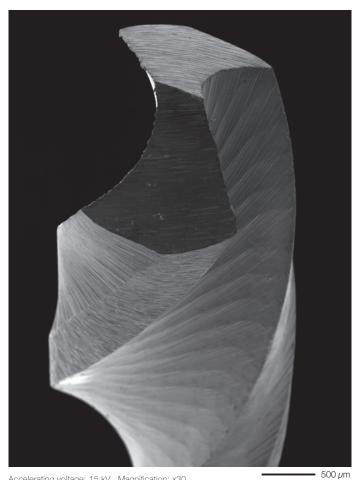
*1 Sold separately.

Fracture surface observation

Fracture surface observation by SEM is widely used to study the causes of failure and crack growth.

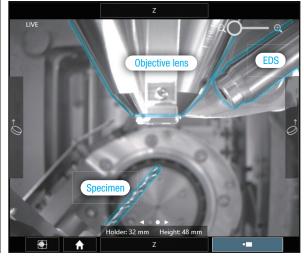

Striations produced by fatigue fracture

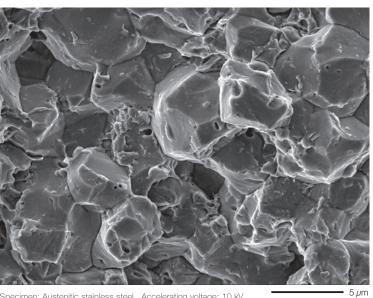
Specimen: Austenitic stainless steel Accelerating voltage: 10 kV Magnification: x5,000 Signal: SE


5 µm

Dimples produced by ductile fracture

Specimen: Austenitic stainless steel Accelerating voltage: 10 kV Magnification: x5,000 Signal: SE • 5 µm


Drill bit observation

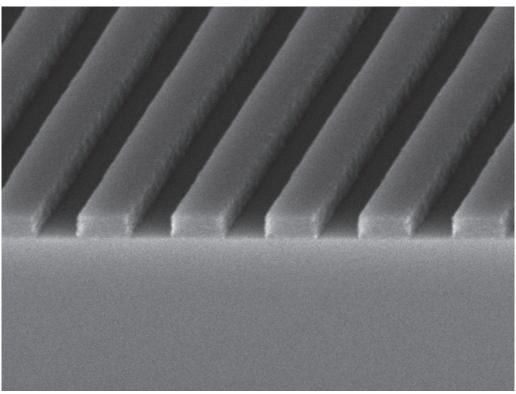

Accelerating voltage: 15 kV Magnification: x30 Specimen tilting: 40° Signal: SE

Tall specimens like this drill bit can be observed directly. Observation from different perspectives can be achieved by rotating and tilting the stage.

The rotation and tilt of stage is visible through the chamber scope.

There is no color in real chamber scope

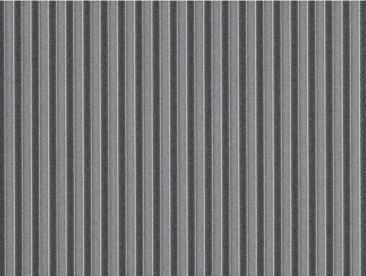
Rock candy pattern produced by intergranular fracture


Small one-touch vise holder (90°)*² Spring type vise holder is ideal for observing cross sections.

Semiconductor

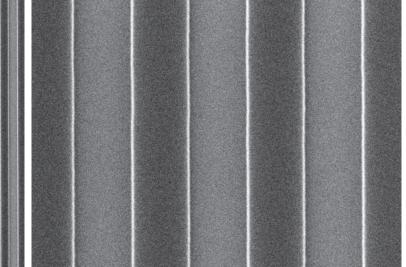
Resist pattern observation

In semiconductor fabrication, quality management of resist by SEM is very important. The process can be confirmed by imaging the cross section of the resist pattern. Measuring line width is also possible.

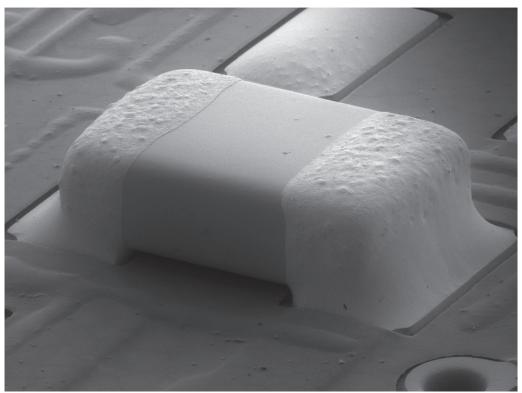

Cross section of resist pattern (tilt to 35°)

Accelerating voltage: 8 kV Magnification: x30,000 Signal: SE

500 nm

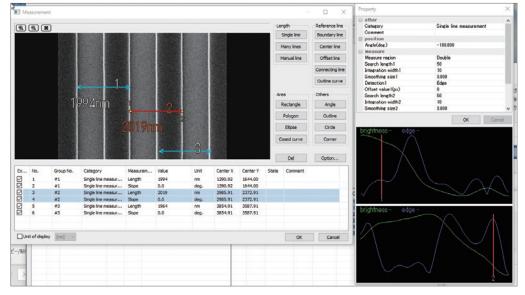

1 *µ*m

Accelerating voltage: 10 kV Magnification: x3,000 Signal: SE


Resist pattern written on a Si wafer

5 μm Accelerating voltage: 10 kV Magnification: x20,000 Signal: SE

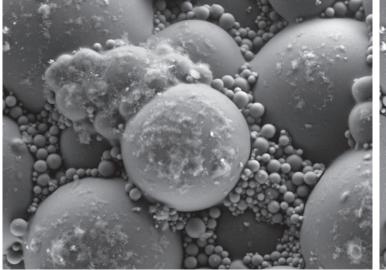
Printed circuit board (PCB) inspection


SEM is an effective instrument in quality management of PCB. The low vacuum condition enables direct observation of the PCB without pre-treatment.

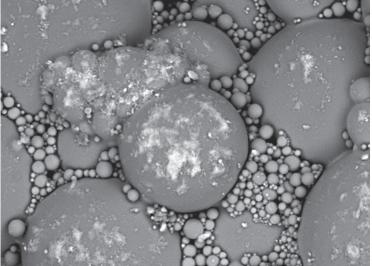
Chip condenser on the PCB

Accelerating voltage: 15 kV Magnification: x45 Signal: Mixed signal (LV backscattered electron: LV secondary electron = 3: 7)

- 500 μm


Image analysis software* allows measuring line width automatically.

* Option. MultilmageTool (produced by SYSTEM IN FRONTIER INC.)



Soft material / Polymer St LV

JSM-IT510 under low vacuum condition is suitable for direct observation of non-conductive specimens,

Superabsorbent polymer

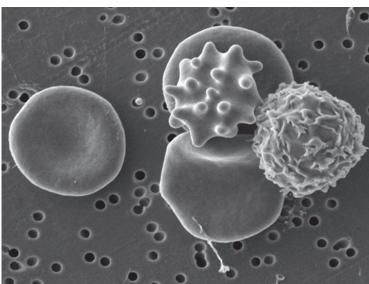
 $10\,\mu m$ Accelerating voltage: 10 kV Magnification: x1,000 Signal: LV BE

— 10 μm

– 1 µm

Accelerating voltage: 10 kV Magnification: x1,000 Signal: LV SE

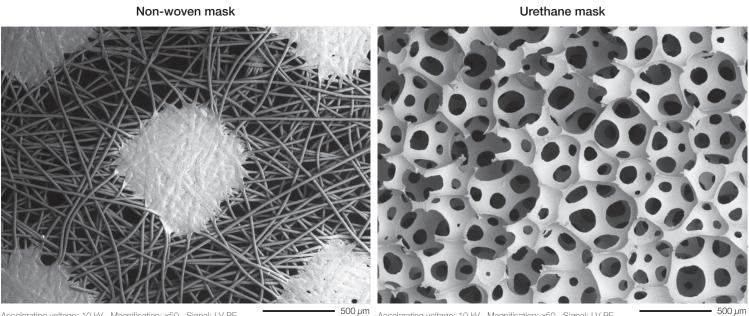
It is possible to obtain SE image and BE image simultaneously. The SE image provides shape information. The BE image shows bright areas indicating higher atomic number composition for this area.



Biology

The normal shape of biological specimen, such as cells or microorganisms, can be confirmed after pre-

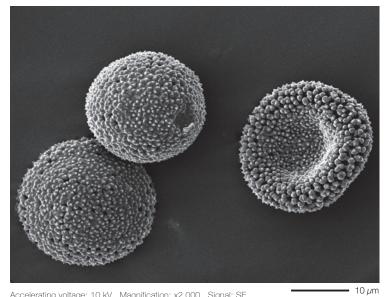
Erythrocyte and leukocyte


Chlorella

Accelerating voltage: 3 kV Magnification: x7,000 Signal: SE

- 2 μm Accelerating voltage: 3 kV Magnification: x15,000 Signal: SE

such as superabsorbent polymer and mask.



Accelerating voltage: 10 kV Magnification: x50 Signal: LV BE

500 µm

Accelerating voltage: 10 kV Magnification: x50 Signal: LV BE

treating them by chemical fixation or freeze drying method to keep their shape.

_

Daphne pollen

Accelerating voltage: 10 kV Magnification: x2,000 Signal: SE

JFD-320*

This freeze drying device minimizes the effect of surface tension, suitable for drying hydrated specimens.

* Option.

Large multi-purpose chamber

Insert large specimens

Specimens as large as 200 mm in diameter by 90 mm tall can be positioned easily in the JSM-IT510 chamber.

Specimen exchange

Draw-out

This draw-out type specimen exchange system is suitable for large specimens with different shapes.

Chamber evacuation is quick, less than 2 minutes 50 seconds*, for high speed specimen exchange.

* Depend on the installation place and specimen.

Load lock chamber

Load lock chamber (LLC) is suitable for faster specimen exchange or keeping the chamber clean.

* Option.

JSM-IT510 has <u>11 ports</u>. It is feasible to perform both EDS and EBSD analysis simultaneously. Moreover, JSM-IT510 can install <u>Dual EDS with 180° orientation</u>.

Technical DA1

JSM-IT510 series can be equipped in the following 4 configurations: BU (Base Unit) / A (Analysis) / LV (Low Vacuum) / LA (Low Vacuum & Analysis).

BU (Base Unit)	Basic type for observation under high vacuum
A (Analysis)	Analysis type, EDS is attached on BU as a standard
LV (Low Vacuum)	Low Vacuum type, for high and low vacuum operation. BED included.
LA (Low Vacuum & Analysis)	Low vacuum type, for high and low vacuum operation, BED and EDS included.

SEM specifications

Resolution	High vacuum mode 2.5 nm (30 kV), 10,0 nm (1,0 kV) Low vacuum mode*1 3,2 nm (30 kV BED)			
Photo magnification	×5 to ×300,000 (Defined with a photo size of 128 mm × 96 mm)			
Display magnification	×14 to ×839,724 (Defined with a photo size of 358 mm × 296 mm)			
Electron gun	W filament, fully automatic gun alignment			
Accelerating voltage	0.3 kV to 30 kV			
Probe current	1 pA to 1 µA			
LV pressure adjustment*1	10 to 650 Pa			
Objective lens aperture	Four stage, with XY fine adjustment function			
Automatic function	Filament adjustment, Gun alignment adjustment Beam alignment, Focus/ Astigmatism / Brightness / Contrast correction			
Maximum specimen size	200 mm diameter × 75 mm height 200 mm diameter × 80 mm height *³ 32 mm diameter × 90 mm height *³			
Specimen stage	Large eucentric stage X: 125 mm Y: 100 mm Z: 80 mm tilt: -10 to 90° rotation: 360°			
Image mode	Secondary electron image, REF image, Compositional image*1, Topographic image*1, Shadow image*1, PD image*4			
Image size	640 × 480 1,280 × 960 2,560 × 1,920 5,120 × 3,840			
Photo assist function	Montage, Simple SEM, Zeromag, Live 3D			
Operation support function	Recipe (Standard recipe / Custom recipe) Measurement (distance between 2 points, distance between parallel lines, angle, diameter etc.) Specimen exchange navi Signal depth function 3D measurement*5			
OS	Microsoft® Windows®10 64bit			
Observation monitor	23.8 inch touch panel			
EDS functions*2	Refer to EDS specification			
Data management	SMILE VIEW™ Lab			
Report generation One-click report	Output to Microsoft®Word Output to Microsoft®PowerPoint*6			
Language switch	Japanese, English, Chinese *7 (operable on UI)			
Vacuum system	Full automatic, TMP: 1, RP: 1 or 2^{*1}			

* 1. Standard in JSM-IT510LV / LA

- * 2 Standard in JSM-IT510A / LA.
- * 3 An optional holder is required. * 4 LHSED (option) is required.
- * 5 SVM (option) is required. * 6 Microsoft[®] Office must be installed.

* 7 Chinese is optional.
* 8 For JSM-IT510A / LA, EDS software is installed on the same PC as SEM control software.

- * 9 The optional probe current compensation unit (option) is required. Automatic monitoring of the probe current is possible only when EDS is connected to the microscope PC. *10 Two EDS detectors with the same active sensor size are required. There is a limitation for stage movements depending on installation ports.

Main options

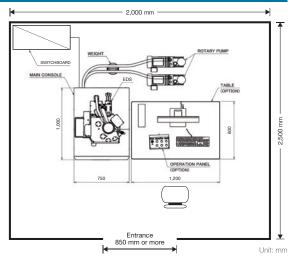

- ·Backscattered Electron Detector (BED)*1
- · Low Vacuum Hybird Secondary Electron Detector (LHSED)
- · Low Vacuum Secondary Electron Detector (LVSED)
- · Energy Dispersive X-ray Spectrometer (EDS)*2
- Wavelength Dispersive X-ray Spectrometer (WDS)
- · Electron Backscatter Diffraction Pattern (EBSD)
- · Load Lock Chamber (pre-evacuation chamber)
- Stage Navigation System (SNS)
- · Stage Navigation System Large Sample (SNSLS)
- · Chamber Scope (CS)
- Operation Panel (OP2)
- ·LaB6 Electron Gun (LAB6)
- · 3D Analysis Software (SVM)

Table (TBL)

Installation Requirements

Power		Single-phase 100 V AC, 50/60 Hz, 3.0 kVA					
Voltage fluctuation		Within \pm 10% (voltage drop from 3.0 kVA by 3% or less)					
Grounding		100 Ω or less					
Installation room	Temperature: 20 \pm 5 °C, Humidity: 60% or less Height: 2,000 m or less, Stray AC field: 0.3 μ T or less (50/60 Hz, Sine wave, WD 15 mm, 30 kV)						
Room dimensions	2,000 mm × 2,500 mm × 1,800 mm or more Door size: 850 (W) mm × 1,800 (H) mm or more						
		W (mm)	D (mm)	H (mm)	Weight (kg)		
EOS column ur	nit	750	1,000	1,470	Approx 405		
Rotary pump (F	RP): 1	530	230	320	Approx 23		
Vibration isolati weight	on	160	160	122	Approx 12		
RP vibration isolation table (1)	400	180	15	Approx 2		
EDS unit					Approx 5		

Installation Room Example

EDS specifications

Applicable to A (Analysis) / LA (Low Vacuum & Analysis)

		Standard O: Option
Control PC	OS: Microsoft®Windows®10 64bit*®	•
Language	Japanese / English / Chinese*7	•
Detector	SDD type	Select from the detector list
	Qualitative analysis (peak identification, automatic qualitative analysis)	
	Visual peak ID	-
	Standard-less quantitative analysis (ZAF method)	
Spectral analysis	Standard quantitative analysis (ZAF method)*9	•
	PHI-RHO-Z (PRZ) method: quantitative correction method	-
	QBase (Qualitative analysis database)	-
Line analysis	Line analysis (parallel & arbitrary direction)	•
	Elemental map (map with multiple colors, monochrome, multiple-color superimposition)	
	Maximum pixel resolution: 4,096 × 3,072	
	Real-time pop-up spectrum	-
	Deconvolution map (net count map, quantitative map)	-
Elemental map	Real-time net count map	•
	Real-time filter	-
	Line profile display	-
	Probe tracking	-
	Playback analysis (time resolved spectral map)	-
	Spectral analysis, Line analysis, Elemental map	
Serial analysis	Comprehensive analysis of already-analyzed data (qualitative & quantitative analysis)	-
	Automatic montage (SEM image, Elemental map)	
Montage	Serial elemental mapping for multiple areas	•
	Particle analysis (auto / manual) & EDS analysis, Classification of particle analysis data, Graph display of statistical processed particle analysis data, Large-area serial particle analysis	0
Particle analysis software	GSR (Gun Shot Residue) library	0
	Metal feature analysis library	0
	Automobile parts cleanliness analysis library	0
Report generation	SMILE VIEW™ Lab Output as Microsoft®Word, Microsoft®PowerPoint file*₅	•
	Integrated management of observation & analysis data	
SEM integration	Specifying analysis position on the SEM operation screen (Direct analysis on UI for SEM)	•
	Graphical display of analysis positions	
Help function	Help guide	•
Dual detector	Analysis with two detectors*10	0
Off-line function	License software for off-line data analysis	0

Specifications for DrySD[™] detectors

Sensor size	Energy resolution	Detectable elements
30 mm²	129.0 eV or less	Be to U
60 mm ² , 100 mm ²	133.0 eV or less	Be to U

Specifications subject to change without notice. Microsoft, Windows, PowerPoint and Microsoft Office are registered trademarks of Microsoft Corporation in USA and other countries. Microsoft Word is a product name of Microsoft Corporation.

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

JEOL Ltd.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 · ISO 14001 Certified

• AUSTRALIA & NEW ZALAND • BELGIUM • BRAZIL • CANADA • CHINA • EGYPT • FRANCE • GERMANY • GREAT BRITAIN & IRELAND • INDIA • ITALY • KOREA • MALAYSIA • MEXICO • RUSSIA • SCANDINAVIA • SINGAPORE • TAIWAN • THAILAND • THE NETHERLANDS • UAE (Dubai) • USA