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As quantitative observations become standard in biological 
research, the need for increased data-acquisition throughput 
grows. Improvements in detectors, microscope hardware and 

software and increased computing performance have led to a signif-
icant speed-up in transmission electron microscopy (TEM) imag-
ing, while at the same time improving data quality1–3. The major 
bottleneck during the acquisition procedure remains the selection 
of features of interest, and in particular the identification of their 
exact coordinates for acquisition, which is done mostly manually. 
In image analysis, current procedures allow the automatic detection 
of specific features4–6. In high-throughput fluorescence microscopy, 
feedback from image-analysis pipelines is applied to define subse-
quent acquisition targets7,8. For TEM, existing acquisition software 
solutions integrate automation for specific tasks such as single-
particle acquisition and tomography9. In cryo-TEM, feedback from 
image analysis is used to identify and judge the quality of particles 
for the acquisition of imaging10–12 or diffraction data13–15. In materi-
als science TEM, similar approaches exist that enable ultra-stable 
imaging16–18. So far, however, there is no solution that incorporates 
advanced image-analysis procedures into the various kinds of TEM 
data-acquisition workflows in a generic way.

Here we present two software tools that, when combined, allow 
the user to incorporate established image-analysis tools and thus 
create specimen-specific automated feedback TEM workflows.

	1.	 SerialEM19 offers control of the microscope and its imaging 
detectors in a very flexible manner. In the last years of this 
software’s development, new features for automation were 
introduced, which we describe in this article. The Navigator 
functionality is the key element for imaging multiple regions 
of a specimen with predefined acquisition parameters in an  
automated manner. By using the built-in scripting function
ality, users can create and carry out highly customized acquisi-
tion routines.

	2.	 To provide SerialEM with the necessary coordinate and image 
information for automated acquisition, we have developed py-
EM, a Python module that integrates common image-analysis 

applications. The automatic identification of features of interest 
from micrographs via specimen-specific image-analysis pipe-
lines consequently enables feedback microscopy.

Information on how to obtain the software is provided in Box 1.

Software
SerialEM. SerialEM19 is a versatile software for TEM data collection, 
originally intended mainly for electron tomography acquisition. 
While its core has been made available as open-source software, 
it can communicate with microscope and camera hardware from 
various manufacturers via a plugin scheme. Over the years, the soft-
ware has been improved with considerable additional functionality 
to increase automation. Users can control and modify most of this 
functionality by using SerialEM’s built-in scripting feature and thus 
highly individualize their acquisition procedures. External software 
tools such as py-EM can be triggered and run through SerialEM’s 
graphical user interface.

A detailed introduction to the main components of SerialEM 
required for automated acquisition is provided in Box 2. These 
functions have been developed since the initial description of the 
software19, but they have not been described in a subsequent scien-
tific publication. The following list of terms defines the nomencla-
ture of SerialEM’s key functionality for automated acquisition:

•	 Map: Navigator item that links an image with coordinates, 
microscope parameters and imaging state

•	 Montage: image of overlapping single tiles, often used as a map
•	 Navigator: the main tool for positioning and targeting in Seri-

alEM; information is stored in Navigator files
•	 Realign to Item: procedure to position the acquisition area pre-

cisely in relation to an image feature from a map
•	 Registration: independent coordinate system of objects
•	 Virtual map: map item created as a combination of an  

externally generated image and microscope parameters  
from a reference map template; used to enable the Realign to 
Item process
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The SerialEM software, all documentation and detailed tutorials 
are available at http://bio3d.colorado.edu/SerialEM/.

The py-EM module. Py-EM is a collection of Python functions 
that interpret and modify SerialEM’s Navigator files and the items 
within, and also perform or trigger image-analysis tasks on maps. 
It serves as an interface between SerialEM—and hence the micro-
scope—and any available software tool for image analysis and pro-
cessing enabling feedback pipelines. We have put a strong focus on 
making this interface as modular as possible to leave maximum 
freedom in the choice of external tools for a specific experiment.

Py-EM contains functions that make use of stitching routines 
available in the IMOD20 software package to process maps consist-
ing of multiple tiles (i.e., montages). It then makes the resulting sin-
gle stitched image available for image processing. At the same time, 
py-EM preserves the Navigator’s coordinate system for that map. 
As a result of the processing, py-EM generates a Navigator file to be 
used for further acquisition.

The key concept of our automation approach is to provide 
SerialEM with a ‘virtual map’ that is generated for each acquisition 
item. With the information about the visual features of the target 
object in the associated image, an accurately positioned acquisition 
can be guaranteed through the ‘Realign to Item’ procedure. Once a 
single map has been generated with the desired acquisition settings 
from anywhere on the specimen, its Navigator entry will be used as 
a template containing all important parameters other than position 
and template image.

Because of the way SerialEM handles the storage locations of 
map images using relative paths, it is usually possible to process data 
directly at the microscope for immediate feedback, or transfer the 
entire data directory including the Navigator file to another com-
puter for processing and then back again for acquisition.

We have used py-EM workflows to automate TEM acquisition 
by either running them as standalone Python scripts or embedding 
them into a KNIME workflow. This generic data-analysis software21 
includes image-processing capabilities22 but also can incorporate 
modules from other platforms (e.g., ImageJ23,24, CellProfiler25,26, 
Ilastik5, R27, MATLAB) into a single workflow.

The modular approach of the py-EM functions combined with 
the KNIME framework thus allows one to incorporate any type of 
existing image-processing routine identifying features of interest 
(Supplementary Fig. 1). Together with KNIME’s graphical repre-
sentation of the process, this makes the image-analysis procedure 
very user-friendly.

Py-EM, step-by-step tutorials and installation instructions are 
available at https://git.embl.de/schorb/pyem.

Applications
High-yield automated cryo-EM data acquisition of large parti-
cles. Challenges. The structural determination of protein complexes 
at high resolution is made possible through the averaging of several 
thousand cryo-electron microscopy (cryo-EM) images. To achieve 
the necessary throughput, systematic acquisition strategies follow 
a regular array of acquisition positions10. SerialEM offers tools to 
help users create these acquisition patterns, and its batch acquisi-
tion and scripting routines are optimized for such experiments. 
Image analysis can be used to target holes on holey carbon grids 
with good ice conditions9. However, neither of these strategies can 
capture the quality or concentration of the target particles, and 
thus they produce large amounts of unusable data when the sample  
is heterogeneous.

If target particles are large enough to be identified in overview 
images, they can be manually picked. In this case, the user needs 
to acquire additional maps at higher magnification at each point 
in order to successfully relocate and acquire targets precisely at 
the selected positions. This exposes the specimen to a higher  

dose before high-resolution imaging and takes a considerable 
amount of time.

Solutions using SerialEM and py-EM. We have developed a work-
flow that allows high-magnification acquisition of manually 
selected target items without the need to acquire additional maps. 
Figure 1 shows the workflow and resulting virtual maps for a cryo-
EM observation of filamentous TORC128 particles. The procedure 
illustrated in Fig. 1a uses py-EM functionality to generate the maps 
needed for realignment from the already acquired medium-mag-
nification overview maps. The py-EM script crops the respective 
image areas from the grid-square maps (Fig. 1b) for each selected 
Navigator item and transforms the extracted images, accounting for 
both the relative scaling and the rotation to match a template map 
at medium–high magnification (Fig. 1c). Thus the extracted image 
that is provided as a new virtual map is suitable for direct correla-
tion with an acquired image for realignment. A detailed description 
of the procedure is provided in Supplementary Protocol 1.

The script maps_acquire.py is provided in the applications direc-
tory of the py-EM code repository.

Box 1 | Software downloads, documentation and development

Downloadable versions of SerialEM, all documentation and de-
tailed tutorials are available at http://bio3d.colorado.edu/Seri-
alEM/.

The features presented in this paper are available in version 3.7. 
SerialEM can be installed on any Windows PC and run without 
connection to a microscope. As it handles the storage location 
of map images using relative paths, it enables data processing 
at a separate workstation while the acquisition of maps or data 
continues at the microscope.

External software such as py-EM scripts can be incorporated into 
the SerialEM GUI via the Tools menu (http://bio3d.colorado.
edu/SerialEM/hlp/html/menu_tools.htm).

A collection of SerialEM scripts for various purposes, including 
all scripts used in the experiments described in this paper, is 
hosted at the public Script Repository (https://serialemscripts.
nexperion.net/).

Both SerialEM (MIT license) and the SerialEMCCD plugin to 
DigitalMicrograph (GPL v.2) are open-source and available at 
http://bio3d.colorado.edu/SerialEM/OpenSerialEM and http://
bio3d.colorado.edu/SerialEM/SerialEMCCD, respectively.

The py-EM Python module is available open-source (GPL v.3) 
for download and further collaborative development at https://
git.embl.de/schorb/pyem. This repository also contains detailed 
installation instructions and various step-by-step tutorials to 
introduce the functionality.

Py-EM was tested using Python 3.6 and 2.7. The module 
depends on the following Python packages: numpy40, scipy40, 
scikit-image41, mrcfile42,43, and pandas44 for KNIME integration. 
Most of these are included in the Anaconda framework (https://
anaconda.org/). An interactive Jupyter notebook (https://git.
embl.de/schorb/pyem/raw/master/pyEM.ipynb?inline=false) is 
available to guide the user through the installation procedure.

The exact versions of SerialEM and py-EM described in this 
paper are provided as Supplementary Software.
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Gain in throughput and dose reduction. Cryo-EM data collection 
is typically divided into two phases: selection of acquisition areas, 
and automated data collection. For large particles, the first 24 h of a 
72-h acquisition slot are spent loading grids, identifying good grid 
squares and acquiring maps of those squares. In parallel, the manual 
picking of particles and running of the py-EM scripts can be done 
offline. Instead of waiting for the acquisition of additional maps for 
realignment, which would take around 8 h, the data acquisition can 
start directly thereafter. This increases the time available for high-
resolution imaging by 20%, from 40 to 48 h.

Because the acquisition of additional maps is not required, the 
specimen gets irradiated with about 0.1–0.2 e–/Å2 less at each posi-
tion. If maps of close particles overlapped, this extra dose would 
apply multiple times, compromising resolution considerably.

The published result reached 27 Å resolution from 50 micro-
graphs of TORC1 filaments acquired entirely manually28. With auto-
mation and realignment to virtual maps, the presented experiment 

generated 2,660 micrographs that allowed processing to a resolution 
at which secondary structure elements could be identified.

Systematic acquisition of individual cells on resin sections using 
feedback TEM. Challenges. A few organelles, such as centrosomes, 
are present only as single copies in a given cell. In a typical TEM 
analysis, the probability of observing a centriole on a 200 nm  
section of resin-embedded cells ranges between 3% and 5%. When 
trying to identify a sufficient number of cells that contain such a 
structure, it is necessary to screen the entire population of a section 
at an intermediate magnification. An alternative would be to imple-
ment targeting strategies based on tagging of the event of interest, 
such as in correlative light and electron microscopy approaches29,30. 
The adaptation of labeling protocols for primary samples often 
leads to a loss of ultrastructural detail. Systematic screens by con-
ventional TEM are extremely challenging, as it is hard to ensure that 
each cell is imaged only once. This makes the task very tedious and 

Box 2 | SerialEM key functionality for automated TEM

Navigator
The Navigator module is the main tool for finding, keeping track of 
and positioning at targets of interest. The user can record positions 
of single points either by storing stage coordinates while browsing 
the specimen or by marking points on an acquired image.

Maps
A map is a specific image for which the Navigator remembers 
its storage location, the corresponding acquisition parameters 
for microscope and camera, and how to display the image to the 
user. Maps are generally used to provide an overview for picking 
acquisition targets, but they also play an important role in allowing 
repositioning at a target during batch acquisition.

Polygons
Polygons are connected points drawn on an image to outline an 
area. Their main use is to define the area to be acquired with a 
‘montage’ at a higher magnification.

Montages
When the area of interest is larger than the field of view of a single 
image, SerialEM can acquire a montage of overlapping tiles. 
Montages are always taken at regular spacing in a rectangular 
pattern, but acquisition at tiles that are not needed to fill a polygon 
can be skipped (Fig. 3a). Users can define very large areas, such as 
a ribbon of sections, by moving the stage to each corner of the area 
and recording a ‘corner point’ there.
Tile positions are reached with electronic image shift, as during tilt 
series acquisition, or with stage movement for larger areas. Periodic 
focusing and other features support the acquisition of high-quality 
images from arbitrarily large areas45. Montages are commonly used 
as overview images for finding targets for data collection.

Realign to Item
The user marks target positions on a map (either a single image 
or a montage). Drift will change the exact specimen position over 
time. Thus, the target feature will not always be centered at the 
recorded stage position for acquisition. To accurately reposition the 
acquisition area to the marked position, SerialEM has a procedure, 
Realign to Item, that takes images under the same conditions as those 
used to acquire a map and cross-correlates those images with the 
map. After alignment to an overview map, the realignment routine 
can also align to a second map acquired at higher magnification, 
such as one to define the target area for tilt series acquisition.

Anchor map
To acquire a pair of maps, the user indicates the lower-
magnification map at the first target as the anchor map template. 
Thereafter, the user can take images of target areas at the acquisition 
magnification by pressing the ‘Anchor Map’ button; the program 
will save that image as a map, then go to the lower magnification 
and take and save the anchor map.

Batch acquisition
Batch acquisition by the Navigator is initiated with the ‘Acquire at 
Points’ dialog, which can acquire an image, a map or a tilt series 
or, alternatively, run a script at each item marked for acquisition. 
The dialog offers a choice of operations to be run before 
acquisition, such as focusing or centering the beam. The Realign 
to Item routine will typically be chosen to guarantee accurate 
repositioning.

Registrations
Navigator items that belong to the same coordinate system 
share the same registration number. When a grid is rotated, or 
removed and reinserted, the coordinate system changes, and any 
new Navigator items need to be assigned different registration 
numbers. The program then determines the transformation from 
one registration to another, using a set of points that correspond 
between the registrations (for example, features that the user 
marks in both an imported light microscopy image and an 
electron microscopy map). Alternatively, the program can find 
the rotation and shift that relate an image before and after rotation 
of the grid for dual-axis tomography by cross-correlation. This 
procedure is called ‘Align with Rotation’. SerialEM also transforms 
map images of a registration accordingly before using them with 
Realign to Item.

Virtual map templates
Each map item contains the necessary operating conditions for 
the electron microscope that enable SerialEM to align to features 
that resemble the map image on the current specimen using 
Realign to Item. Linking a Navigator map item to an image while 
adding microscope parameters duplicated from a template map 
will create a virtual map entry. We use this approach to precisely 
realign to a specific cell in neighboring serial sections duplicating 
maps of target cells from a previous section to identify and target 
the same cell on subsequent sections (‘Automated serial-section 
TEM’, Fig. 3b,c).
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time-consuming. The application presented here is a study of cen-
triole morphology in leukemia cells collected from individuals. To 
statistically assess ultrastructural diversity, we needed to acquire a 
large number of centrioles in different samples.

Solutions using SerialEM and py-EM. We have developed a workflow 
to automatically acquire individual cells on serial plastic sections. 
With dimensions of about 500 × 200 µm, each section typically dis-
plays from several hundred up to 1,500 cell cross-sections.

A schematic of the procedure, the input map, the output from the 
automated cell detection, the resulting Navigator file in SerialEM 
and an example virtual map are shown in Fig. 2.

To successfully identify each cell, we used the KNIME platform21,22  
to link and incorporate various independent image-analysis tools 
(in our case, Python and ImageJ/Fiji) (Fig. 2a). The user can easily  
control image-analysis parameters through a graphical dialog  
without any programming knowledge. Supplementary Fig. 1a shows 
the layout of the KNIME workflow and the graphical controls where 
users can modify a few selected parameters. The image-analysis 
procedure is illustrated in Supplementary Fig. 1b.

In our example, the workflow uses py-EM to merge the low-
magnification mosaic map(s) and to load the map image(s) into  
the KNIME analysis pipeline for the identification of single cells.  
It then extracts virtual maps at each detected position, gener-
ates polygons that match the outline of each cell linked to the  
corresponding virtual maps, and writes a Navigator file ready  
for acquisition.

We acquired an image stack containing one image per cell that 
could then be screened easily to categorize cells according to cell 
type, phenotype or specific morphological features. In the presented 
example, the software automatically detected 1,325 cell profiles,  
out of which we selected 44 cells that displayed parts of a centriole 
(discussed further in the section ‘Automated serial-section TEM’). 

This manual curation step takes about 1 h. The entire image stack is 
presented in Supplementary Video 1.

The files needed to run the workflow in KNIME are provided as 
part of the py-EM code.

Gain in throughput and experimental design possibilities. Previous 
studies illustrating centriole morphology31,32 that used manual 
screening required several weeks to months at the microscope but 
resulted in only a few dozen individual observations. A comparative 
phenotypic analysis of a statistically relevant number of centrioles is 
therefore not possible with a conventional approach.

In the presented experiment, we were able to identify several 
hundred centrioles in leukocytes from different subjects for further 
high-resolution studies, with only a few days of screening required 
for each. The resulting virtual maps allowed SerialEM to accurately 
return to any chosen cell for further acquisition.

Acquiring the entire section at sufficient resolution would 
require around 70 × 30 tiles, resulting in a 2D image with a size 
that would easily exceed the memory of most current workstations. 
Therefore, the identification of interesting cells by systematic scan-
ning through such a large montage is challenging both manually 
and via image analysis.

Using automated targeted acquisition, the user can screen a stack 
of images centered on every individual cell. This makes it easy to 
focus on morphological features and avoids redundant acquisitions. 
Also, because every single detected cell is imaged, statistics and clas-
sification based on observed phenotype are readily available.

Automated serial-section TEM. Challenges. In a serial-section 
TEM experiment, one wants to follow a feature across a series of 
sections that are adjacent on the TEM grid33. When full cell vol-
umes are being reconstructed, series of sections can easily span 
dozens of grids. For the acquisition of high-resolution data, such 
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as tomograms, positional information needs to be propagated for 
each location on each section. While this can be done manually 
when one is navigating to only a handful of features per section, 
it quickly becomes a tedious and very time-consuming task when 
more objects are targeted.

Solutions using SerialEM and py-EM. In our example, we selected 
60 human leukocyte cells on one of the serial sections (thickness: 
200 nm) as described above. We wanted to acquire the exact same 
cells on the four other sections of this grid (Fig. 3a), as well as on 
the consecutive grids, and thus follow the selected cells in 3D. We 
used py-EM scripts to duplicate the list of target items and then used 
SerialEM’s registration and realignment functionality to success-
fully locate cells on neighboring sections on the basis of the maps 
from the preceding section (Fig. 3b). For each cell of interest, these 
maps at moderate magnification covered a sufficiently large field of 
view for realignment (Fig. 3c). We then automatically acquired new 
maps at every target location wherein we defined the exact posi-
tion for high-magnification acquisition. The SerialEM script that 
we used to run the acquisition maintains consistent file names and 
Navigator labels throughout the procedure.

We used this approach in the presented example to successfully 
follow each of 60 cells through a series of 45 serial sections across 
nine grids.

Figure 3d shows a cell acquired from 30 sections on six grids. 
An example of aligned images of a cell across 42 of these sections is 
shown in Supplementary Video 2.

A detailed description of the procedure is provided in 
Supplementary Protocol 2. Supplementary Video 3 provides a step-
by-step tutorial on the use of SerialEM to register maps from two 
adjacent sections.

To resolve the structure of the respective centrosomes at higher 
resolution, we acquired tilt series at positions manually defined in the 
respective maps on the consecutive sections. We use a custom script 
for fast tomography acquisition. We automatically processed the large 
amount of acquired tilt series using IMOD’s batch tomogram recon-
struction34 on a high-performance compute cluster, which resulted 
in full volumes of the desired objects. An example of such a recon-
structed tomographic volume is shown in Supplementary Video 4.

We have made all SerialEM scripts used in this experiment avail-
able at the public Script Repository (https://serialemscripts.nex-
perion.net/).

Gain in throughput and experimental design possibilities. Manual 
selection of target cells on consecutive grids is feasible for only a 
small number of targets and strongly depends on the presence of 
easily recognizable features on the specimen. Without these, it can 
take an expert a day to locate just a few target positions across serial 
sections35. Our automated approach enables parallel tracking and 
acquisition of hundreds of features.

Before the scripts were introduced, it took a full day to trans-
fer maps of 60 cells across five sections by hand. With the scripts, 
setting up a transition from section to section takes about 10 min, 
independent of the number of objects. Because of the usually high 
number of acquisition points, the necessary imaging time for the 
maps strongly depends on secondary factors such as the speed of 
the microscope stage and the desired autofocus procedure. For 60 
cells, the map acquisition takes between 15 and 30 min per section.

The main determining factor for the success rate in efforts to 
automatically relocate cells is the quality of serial sectioning. Failure 
to register maps to adjacent sections can occur if large cracks or 
folds are present.
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bars, 50 µm (b,c) or 5 µm (d). The automated identification of cells presented in this figure was successfully applied to 26 sections with about 1,000 cells 
each for this experiment, and with modified image-analysis pipelines for two different specimens.
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In our experiments, the transfer of maps from one section to the 
next worked almost perfectly for every cell. Problems in identify-
ing the correct feature arose only when the edge of a section, a grid 
bar, a crack or fold, or large contaminations were blocking the field  
of view.

When features of cells or tissue do not change dramatically from 
one section to the next and the quality of the serial sections is good, 
an alignment can be done for all sections of a grid in one procedure. 
The reference maps will then be taken from the last section of the 
previous grid. There is no longer a need for user interaction after 
each individual section, and the procedure can be fully automated.

The maps cover not only the cell of interest but also the constel-
lation of neighboring cells. Even when a given cell ends in z, the 
region is usually correctly found.

We then manually screen the maps for ending cells and misalign-
ments when setting up the tomography acquisition.

The throughput in tomography acquisition has also increased 
dramatically, thanks to the availability of fast sCMOS (scientific 
complementary metal-oxide semiconductor)-based detectors. 
When combined with a sufficiently stable microscopy stage, the 
built-in drift correction and short exposure times allow one to 
skip otherwise necessary tracking steps. Compared with a tradi-
tional tilt series, acquisition is about twice as fast and the necessary 
time for a single-axis tomogram with 121 tilt images is reduced to 
around 7 min.

In the presented experiment, we followed a total of 120 cells 
across 100 sections on 20 grids for three different specimens. In 
these cells, we acquired a total of 992 tomograms in series on con-
secutive sections.

Discussion
We have developed both software packages described in this  
article with a strong focus on flexibility. SerialEM is capable of 

controlling transmission electron microscopes, accessories and 
detectors from a range of different vendors, and covers acquisition 
strategies such as automated single-particle acquisition, cryo-elec-
tron tomography, large 2D mosaic tiling and batch tomography on 
serial sections. Data presented in this article were acquired with the  
following microscopes: JEM 2100Plus (JEOL Ltd., Akishima, Japan), 
Tecnai F30 and Titan Krios G3 (Thermo Fisher Scientific, Waltham,  
MA, USA).

The py-EM module aims to universally link SerialEM with a vari-
ety of software options joining image analysis and TEM acquisitions 
in a feedback logic. This means that the main task in setting up an 
automated TEM workflow for a specific application is now reduced to 
the development of a suitable image-analysis routine. These routines 
are obviously not limited to the examples described in this article, and 
could also include advanced feature detection using machine learn-
ing5,6 including convoluted neuronal networks36,37. Such approaches 
will reduce the need for manual identification of particles in cryo-
EM by automatically picking holes or large particles. In particular, 
given the inherently low signal-to-noise ratios in cryo-EM and cryo-
tomography, machine learning approaches might enable the acquisi-
tion of objects that would not be recognizable by eye38.

The possibility of imaging every entity of a specimen in a con-
trolled manner offers entirely new possibilities for TEM. Automated 
screening and classification of different cell types and phenotypes 
or the detection of aberrant morphology can be done by compu-
tational analysis when one has large amounts of comparable data 
at hand. The automation of serial-section TEM reduces the work-
load required for this technique substantially and introduces new 
possibilities for large-scale 3D electron microscopy while maintain-
ing high lateral resolution. The increased throughput and resulting 
capability to generate a lot more data that can subsequently be fed 
into automated analysis pipelines create possibilities for entirely 
new types of quantitative TEM experiments.
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Fig. 3 | Automated acquisition of cells on serial sections. a, Overview of a ribbon of sections placed on a slot grid. The green outline marks the polygon 
used to acquire this montage map. The blue boxes denote the locations of the maps used to realign to each cell. Asterisks indicate tiles that are not 
acquired. b, Magnified regions corresponding to the yellow boxes in a, showing the location of one cell of interest. It is not crucial for the blue box that 
denotes the location of the corresponding maps to be precisely centered on the cell for repositioning. The image information used for realignment is taken 
from the map itself. c, Two maps of a single cell in neighboring sections. These images are used during the Realign to Item task. d, Gallery of images of an 
individual cell across 30 sections (thickness: 200 nm) spread across six grids. The images were automatically aligned using TrakEM239. Another cell that 
spans nine sections is shown in Supplementary Video 3. Scale bars, 50 µm (a), 20 µm (b) or 5 µm (c,d). For the presented experiment, we followed a total 
of 120 cells across 100 sections on 20 grids for 3 different specimens.
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Reporting Summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All raw data presented in the ‘Applications’ section of this paper are 
available from the corresponding authors upon reasonable request.
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