

JSM-IT700HR InTouchScope[™] Scanning Electron Microscope

Features	Application	Related Products	Information

Application

Application JSM-IT700HR

>

- CLEMnote
- Introducing Cryo Scanning Electron Microscopy

I see all

Expanding the microscopic world through JSM-IT700HR

Nanomaterials

Carbon nanotube

Accelerating voltage: 2 kV, Signal: Secondary electrons, Magnification: ×100,000 Observation at low accelerating voltage clearly reveals the surface structure.

Catalyst Pt on carbon

Accelerating voltage: 10 kV, Signal: Secondary electrons (left), Backscattered electrons (right), Magnification: ×100,000

Electronic products

Fractured surface of ceramic capacitor

Accelerating voltage: 5 kV, Signal: Backscattered electrons, Magnification: ×1,000 (left) ×10,000 (right)

CP-milled section of semiconductor SRAM

Accelerating voltage: 5 kV, Signal: Backscattered electrons, Magnification: ×60,000 (left, right)

CP is an instrument for preparing a cross section of a specimen using a broad Ar ionbeam and shield plate. In recent years, CP has been widely used to prepare cross sections of metal, ceramics, plastic, and other materials. Learn more >

Metals

Large area montage

analysis

Fracture surface of stainless

Accelerating voltage: 15 kV, Signal:

Secondary electrons, Magnification: ×500,

Montage result: 13×6

By observing the entire area of a fracture surface, a detailed analysis of the fracture mechanism can be made. In this specimen, typical fatigue failure, such as the striation pattern and dimple microvoids, are observed.

Elemental analysis: EDS map

CP-milled section of precision cutting blade

Accelerating voltage: 15 kV, Signal: Backscattered electrons (left) EDS map

(right), Magnification: ×3,000

Using overlay map, the distribution of heavy metal elements in the precision cutting blade is made clear.

High magnification EBSD analysis

CP-milled section of stainless wire along the

longitudinal direction

EBSD map image

(direction: Direction 3)

Image Quality Map(left), Phase map image(right) Accelerating voltage: 10 kV, Probe current: 5 nA, Magnification: ×10,000

Soft materials

Carbon black in the rubber

Accelerating voltage: 15 kV Signal: Secondary electrons Magnification: ×20,000

Plastic glove

Accelerating voltage: 5 kV, Signal: Low vacuum backscattered electrons Magnification: ×30,000

Membrane on a chicken eggshell

Accelerating voltage: 5 kV, Signal: Low-vacuum secondary electrons Magnification: ×500

Low-vacuum mode

Low vacuum mode allows for observation of nonconductive materials without treatment. Evacuation at the objective lens improves image quality in low vacuum mode.

Food

Ice cream

Accelerating voltage: 7 kV, Signal: Low vacuum backscattered electrons, Magnification: ×300 (left) ×30,000 (right)

Fat globules and muscle fiber of

chicken

Accelerating voltage: 10 kV Signal: Low-vacuum backscattered electrons Magnification: ×300

LV cryo-holder*1

LV cryo-holder keeps a specimen frozen without water loss.

A hydrous specimen like food can be observed. It is possible to visualize the texture by understanding the size of ice and the diameter of muscle fibers. *1 Optional

Biology

E. coli and T4 phage

Accelerating volage: 2.5 kV Signal: Secondary electrons Magnification: ×25,000

Accelerating volage: 2.5 kV Signal: Secondary electrons Magnification: ×80,000

Mitochondria of

mouse kidney

Accelerating voltage: 2.5 kV Signal: Secondary electrons. Magnification: ×50,000

JFD-320 Freeze Drying Device*²

This freeze drying device minimizes the effect of surface tension, suitable for drying hydrous specimens. Specimen preparation of E. coli and T4 phage: Critical point drying after Glutaraldehyde and OsO₄ treatment. Specimen preparation of mouse mitochondria: Freeze drying after OsO₄ maceration treatment.

* 2 Optional

Facebook

Twitter @JEOL_Japan

Social Media accounts

Copyright © 1996-2021 JEOL Ltd. All Rights Reserved.