Yuka Otake, Atsuhiro Fujii, Hiroki Kato, Nobuaki Tanabe, Ichiro Ohnishi

JEOL Ltd. Tokyo, Japan

## Abstract

EDS chemical mapping is a method to visualize equivalent chemical composition areas by classifying spectra in spectral imaging data (SI). Classification of large numbers of spectra, hundreds of thousands or even more, can be achieved by machine learning.

However, hard clustering methods provide a map filled with homogeneous colors, even in the areas with the inhomogeneous compositions. Non-negative Matrix Factorization (NMF), one of the spectral decomposition method, can represent gradual changes of spectra as continuous changes in the abundance of components. On the other hand, the components may converge to unnatural results as an EDS spectrum.

In this work, we tried to create EDS chemical map by unmixing SI with the most characteristic spectra extracted from the SI by Vertex Component Analysis (VCA)[1].

As a result, we obtained the chemical map that not only could represent gradual changes in composition, but also gives easier understanding of the chemical composition.

# 2. Chemical mapping by Cluster analysis

### **Process:**

### 1. Preprocess

- 1. Emphasize features in spectra. 2. Convert each spectrum to intensities at major peak.
- 2. Agglomerative Clustering<sup>[2]</sup>
- 3. Drawing Chemical map
- Fill pixels linked to clusters.
- 4. Identify chemical composition

Qualitative analysis of averaged spectrum from each cluster.



Fe,Ni-sulfides Embedding resin Embedding resin

Fig.5: The chemical map by Cluster analysis. Monochromatic red was used for zoning areas. The small grains of Cr-oxides could not be distinguished, while the embedding resin and Mg, Fe-silicates were separated into two clusters, respectively.

### **Results**:

- Indicate Zoning >> Not
- Cluster analysis does not support overlap, which means belonging to more than one cluster.
- Small grains of Cr-oxides >> Not distinguished

### Reference

[1] J. M. P. Nascimento and J. M. B. Dias, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 43(2005), p.898. doi:10.1109/TGRS.2005.844293

[2] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. [3] GitHub - MotokiShiga/malspy: Machine Learning for Spectral Imaging, https://github.com/MotokiShiga/malspy (October 22,2022)





sample.

### **Process:** 1. Preprocess

- Emphasize features in spectra. **2. NMF** (Non negative Matrix Factorization)[3]
- Convert SI into several components and its abundance. 3. Drawing Chemical map
- Overlay the abundance maps.
- 4. Identify chemical composition Qualitative analysis of components while ignoring dips.



Fig.6: Chemical map by NMF. The center grain was represented by a gradual color change from the red (Mg-silicates) to light blue (Mg, Fe-silicates). The small grains of Cr-oxides were marked with pink.



corresponding to Fe, Ni-sulfides.

# **Results**:

- no L line peaks).

# **1.** Sample for the Verification

**Polished section of chondrite meteorite – contains 10 substances (phases)** 

Fig.1: The backscattered electron image of the

There are various kinds of minerals such as olivine (1,2), apatite (4), and Fe-Ni metal (5).

Fig.2: X-ray spectrum of each area. Compound name in the legend are based on the quantitative analysis results. Acc. Vol. 10 kV.



Fig.3: The elemental maps of the sample. Cr is sparsely located, as indicated by arrows. Acc. Vol. 10 kV. EDS map size: 256x192 pixels.

## 3. Chemical mapping by NMF

# 4. Chemical mapping by VCA

### Process:

- 1. Preprocess Emphasize features in spectra.
- 2. VCA (Vertex Component Analysis)[3]
- Find vertex spectra. 3. Drawing Chemical map
- Overlay the projections of the vertex spectra. 4. Identify chemical composition
  - Qualitative analysis of the vertex spectra.



Cr-oxides with Fe-K

# Fig.7: The NMF component and real EDS spectrum

**NMF** (green): showing dips at characteristic X-ray energy of O, Mg, Si, and Ca, which are unnatural for EDS.

**Real** (black): created by integrating the spectra in the red rectangle areas indicated on the BSE image.

### Indicate Zoning >> Done

As changes in the abundance of the components. Small grains of Cr-oxides >> Distinguished

Understanding chemical composition >> Not easy Due to dips and inconsistency of peaks (K line peaks but



Mg,Fe-silicates (Mg-rich) Al,Na-silicates Mg,Ca,Al-silicates Mg,Fe-silicates

🗖 Al,Mg,Fe-silicates 🗆 Fe,Ni-metal Ca-phosphates Embedding resin Cr-oxides



| Re | sults :  |     |
|----|----------|-----|
|    | Indicato | Zor |

# Summary

Fig.9: Chemical map by VCA.

We tried to create a chemical map by unmixing SI using the most characteristic spectra extracted from the SI by VCA. In this work, the EDS spectral imaging data containing zoning area, showing gradual change of composition was used. Although the areas were represented as if they have homogeneous composition in the cluster analysis based map, NMF and VCA could indicate them by using inhomogeneous colors. In terms of identifying the chemical composition of each area, the VCA based map was more practical than NMF.

We hope the method can be applied to and help various kinds of field of research.

## Acknowledgments

Prof. S.Muto from Nagoya University and prof. M.Shiga from Tohoku University are thanked for their useful advice on data processing methods.